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Human and industrial automation, powered by artificial intelligence (AI) and the ecosystem of billions
of mobile and computing devices with sensors connected through the infrastructure of the internet (i.e., the
Internet of Things) is shaping the future of our society. Due to the growing computational power of these
devices, future distributed machine learning (ML) systems operate based on storing data locally and pushing
computation to edge nodes of the network. As a result, next-generation distributed learning systems will
encounter a paradigm shift from the centralized setting, where data is stored and processed in a central
machine, to distributed computing systems.

While distributed learning systems can enable a variety of new applications in health-care, autonomous
vehicles, smart cities, robotics, etc., one needs to tackle new challenges that require a major departure
from the standard methods designed for machine learning and optimization both at the systems level and
algorithmic level. The core constitutive components of distributed machine learning systems are “learning
and inference”, “optimization”, and “control”. Based on this, my approach in designing efficient distributed
learning systems is to a) identify systems challenges, develop tools from information and coding theory to
tackle these challenges, and understand the fundamental limits of computation and learning, b) design and
analyze distributed optimization algorithms that have provably near-optimal performance, and c) leverage the
developed systematic solutions for distributed machine learning to achieve the ultimate goal of optimally
controlling a multi-agent data-driven human-cyber-physical-system such as a next-generation intelligent
transportation system. Towards this end, I bring expertise from 3 traditionally separate research areas:
(i) Information and coding theory to understand the fundamental limits of high-dimensional inference,
machine learning, and distributed computation; (ii) Optimization theory for designing machine learning
algorithms with strong provable performance guarantees, and (iii) Control and game theory for efficient
control of multi-agent networked systems and understanding humans’ behavior in an autonomous system.
The goal of my research group is to design theoretical foundations and algorithms that address challenges
in future data-driven and autonomous systems with a major focus on distributed machine learning and
computation, as well as semi-autonomous h-CPS.

Overview of Selected Work
My work has focused on several related projects on distributed learning systems, machine learning, and
control. I summarize selected prior contributions in the following.
Coded Computing: Coding Theory for Fast and Reliable Distributed Computation. Modern large-scale
computing systems have enabled many applications in the fields of big data analytics, mobile computing,
and scientific computing, and are driven by scaling out computations across clusters consisting of many
small machines made of commodity low-end hardware. There are, however, two well-known fundamental
bottlenecks that arise: (1) Data Shuffling Bottleneck, which is due to the massive amounts of data that must
be moved among computing nodes, often over many iterations of a running algorithm; (2) Straggler Delay
Bottleneck, which is due to the latency in waiting for the slowest nodes to finish their tasks. The traditional
approaches to these problems involve injecting computation redundancy in the form of “replications”. For
example, replicating the straggling task on another available node is a common approach to deal with
stragglers. To tackle these bottlenecks, we have proposed techniques from information and coding theory
to develop distributed computation schemes that are robust to stragglers and have small communication
overhead. In particular, I am the co-author of the first paper that introduces how coding theoretic techniques
can enable fast and reliable distributed machine learning [1]. The journal version of this paper obtained the
Communications Society & Information Theory Society joint paper award in 2020, has received major
recognition since 2016 (more than 500 citations), and led to the development of a new area known as
Coded Computing in the information theory and machine learning communities. Since then, my group has
published several conference and journal papers in the area of coded computation addressing different
aspects of the problem including wireless coded computing [2], heterogeneous coded computing [3],
multicore coded computing [4], coded computing for big data analytics [5], gradient coding [6], and dynamic
coded computing [7]. Further, I am the co-author of the paper “Online Coded Caching” [8] that received
the best paper award at IEEE International Conference on Communications (ICC) in 2014. This work has
demonstrated significant impact in the emerging area of coded caching by introducing system dynamics
and optimal cache update and eviction rules, and has resulted in a published patent [9]. The idea of using
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coding theory for data shuffling in machine learning is indeed closely related to online coded caching.
Robust and Communication-Efficient Federated Learning. In many large-scale machine learning appli-
cations, data is acquired and processed at the edge nodes of the network such as mobile devices, users’
devices, and IoT sensors. Federated learning is a novel paradigm that aims to train a learning model at
the edge nodes as opposed to traditional distributed computing systems such as data centers. The main
objective of federated learning is to fit a model to data generated from network devices without continuous
transfer of the massive amount of collected data from edge of the network to back-end servers for processing.
Federated learning has been deployed by major technology companies including Google and Facebook with
the goal of providing privacy-preserving services using users’ data; however, it faces several challenges
including communication bottleneck, network heterogeneity, statistical heterogeneity, privacy, and security.

My group has proposed a novel federated learning algorithm called FedPAQ, a communication-efficient
Federated learning algorithm with Periodic Averaging and Quantization, which provably addresses the
communication and scalability issues in federated learning [10] and has already received major attention
from the ML community (95 citations in less than 2 years). This method stands on three key features: (1)
Quantized message-passing where the edge nodes quantize their updates before uploading to the parameter
server; (2) periodic averaging where models are updated locally at devices and only periodically averaged at
the server; and (3) partial device participation where only a fraction of devices participate in each round of
the training. Recently, we have also addressed the straggler problem using an adaptive node participation
mechanism that leverages the interplay between statistical accuracy and system heterogeneity [11]. Finally,
we have addressed the challenge of robustness and data heterogeneity in federated learning using optimal
transport theory and federated minimax optimization in [12]. In a related line of work, we have developed
the first distributed optimization algorithm with quantization that provably and exactly converges to the
optimal solution at optimal rate for various settings and network topologies [13–15].
High-Dimensional Inference. The past several years have seen a new approach to the recovery of high-
dimensional data, where a few sketches of the data retain sufficient information for an approximate sparse
recovery. This approach has found numerous applications in the areas of compressive sensing, data
stream computing, group testing, etc. Our group has established an innovative method for the sparse
recovery of high-dimensional data using fast decoding techniques from modern coding theory. Using this
method, one can solve the sparse recovery problem with strong guarantees using sublinear time complexity
of O(kpolylog(n)) where k is the sparsity and n is the data dimension, and with near-optimal sample
complexity. We have applied the methodology to the problems of compressive sensing [16], compressive
phase retrieval [17], group testing [18–20], and sparse covariance estimation [21]. Deploying fast decoding
techniques, the proposed method significantly outperforms the sate-of-the-art sparse recovery algorithms in
terms of decoding or time complexity. In a related line of work, we have studied the performance of a wide
class of convex-optimization-based estimators for recovering a signal from corrupted one-bit measurements in
high-dimensions [22]. The general result predicts sharply the performance of such estimators in the linear
asymptotic regime using the convex Gaussian min-max theorem (CGMT) from probability theory. We have
extended this result to characterize for the first time the fundamental limits on the statistical accuracy of
convex ridge-regularized empirical risk minimization (ERM) for inference in high-dimensional generalized
linear models [23]. For a stylized setting with Gaussian features, we have developed sharp characterization
together with tight lower bounds on the estimation and prediction error that enable us to design optimal
loss function and regularization parameters in supervised learning via ERM.
Adversarial Machine Learning. Developing robust training schemes against adversarial perturbations
to the input data has received significant attention in the machine learning community, and is of major
importance in sensitive applications such as healthcare. While deep neural networks have advanced the
state-of-the-art in many machine learning applications, they are vulnerable to adversarial perturbations
to the input data. As an example, one can induce image classification errors through small perturbations
that are imperceptible to humans. It was initially conjectured that this vulnerability is due to the complex
and nonlinear nature of the neural networks, but it was later demonstrated that it is actually due to
their “excessive” linearity. Motivated by this observation, our group has focused on characterizing the
fundamental limits of adversarial machine learning using stylized mathematical models. We have provided
exact asymptotics for standard and adversarial errors of the estimators obtained by adversarial training with
`q-norm bounded perturbations (q ≥ 1) for both discriminative binary models and generative Gaussian
mixture models [24]. We have further considered the `0 or sparse attack model, and proposed a novel
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asymptotically optimal classifier that is based on filtration and truncation [25]. This the first theoretical result
that shows optimality of robust classification under sparse attack. We have further proposed a new robust
classification method under `∞ attack based on generalized likelihood ratio test (GLRT) that has provably
strong performance even in the case the the adversary’s budget is not known [26]. In a related line of
work, we have proposed a systematic approach to study adversarial machine learning by exploiting natural
sparsity of the data and locally linear models for the network. We have proposed a defense mechanism
against adversarial attacks based on a sparsifying front-end, designed to preserve desired input information
while attenuating perturbations [27–29].
Human-Cyber-Physical-Systems with Mixed Autonomy. Today’s society is rapidly advancing towards
semi-autonomous systems that involve autonomous and human agents interacting in complex human-cyber-
physical systems (h-CPS). As an example, autonomous and connected vehicles are soon becoming a significant
part of roads normally used only by human drivers. Our group has developed new models for h-CPS
and in particular traffic networks with mixed autonomy, where a fraction of cars are human-driven and
the rest are autonomous [30, 31]. Under these models, we have revisited the Wardrop (Nash) equilibrium
of mixed-autonomy traffic networks from a new game theoretic lens [32]. Using this insight, we have
designed control algorithms for the autonomous cars’ routing decisions (in case they are controllable or
altruistic) such that the system reaches an optimum equilibrium [33, 34]. Moreover, we have designed
optimal tolling schemes for both cases of differentiated and anonymous tolls to reduce the price of anarchy
in traffic networks with mixed autonomy [35]. Our results demonstrate that with differentiated tolling, i.e.
having different tolls for autonomous cars than human-driven cars, one can achieve the socially optimum
equilibrium, but anonymous tolling can have small improvement. Finally, we have developed a novel
approach in learning human choices of prices in autonomous transportation services versus latency, or travel
time [36] via active learning. After Covid-19 pandemic, our group utilized this approach to investigate the
effect of the pandemic on humans’ travel choices. Clearly, we expected that people value safety more than
latency and cost (trying to avoid public transportation or ride-sharing), and the results confirmed this. We
then built on this to develop new incentive mechanisms that can guarantee safe and efficient transportation
[37].
Reinforcement Learning for h-CPS. Our group has introduced a novel dynamic mixed-autonomy traffic
model, and using this dynamic model, we have leveraged tools from reinforcement learning to dynamically
and optimally route autonomous cars [38]. The key idea is quite simple yet important. If we can (partially)
control the routing decisions of the autonomous cars, we can guide them such that the selfish response
of humans still lead the network to an efficient equilibrium. This idea becomes more interesting in the
dynamic setting, where roads can experience unexpected delays due to accidents or constructions. In
response to such anomalies, a controlled fleet of autonomous cars can reroute in an online fashion to
reduce the overall network congestion. Due to complicated dynamics, we have tackled this problem using
reinforcement learning and shown that the near-optimal control and routing policy is indeed learned.
In related works, we have studied (Semi-)Autonomous Mobility on Demand (AMoD) Systems (such as
Uber) from a game theoretic viewpoint [39], and optimized their joint routing and pricing decisions using
reinforcement learning [40]. At a higher level, our group is active in applying techniques from reinforcement
learning to the control of mixed autonomous multiagent systems. In a recent work, we have proposed a novel
training method using “gifting” for multiagent reinforcement learning in order to reach socially optimum
equilibria in Markov games [41]. Gifting allows each agent to give some of their reward to other agents. We
have employed a theoretical framework that captures the benefit of gifting in converging to the prosocial
equilibrium by characterizing the equilibria’s basins of attraction in a dynamical system and demonstrated
increased convergence of high risk, general-sum coordination games to the prosocial equilibrium both via
numerical analysis and experiments.
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